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Abstract. The Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which controls the sources sinks and 

chemistry within the Goddard Earth Observing System, recently underwent a major refactoring and update to the representation 15 

of physical processes. This paper serves to document code changes that were included in GOCART 2nd Generation (GOCART-

2G) and establishes a benchmark simulation that is to be used for future development of the system. The code refactoring 

increases flexibility such multiple instances of an aerosol species can be run and interact with radiation and cloud microphysics, 

in addition to the output of multiple wavelength aerosol optical properties in support of data assimilation. From a science 

perspective, a new radiatively active tracer, brown carbon, was added to distinguish smoke from other sources of organic 20 

aerosol thereby improving optical properties entering the radiative calculations. A four-year benchmark simulation was 

evaluated using in situ and space borne measurements to develop a baseline and prioritize future development. A comparison 

of simulated aerosol optical depth between GOCART-2G and MODIS retrievals indicates the model captures the overall spatial 

pattern and seasonal cycle of aerosol optical depth but overestimates aerosol extinction over dusty regions and underestimates 

aerosol extinction over northern hemisphere boreal forests, requiring further tuning of emissions. This MODIS-based analysis 25 

is corroborated by comparisons to MISR and selected AERONET stations. Despite the underestimate of aerosol optical depth 

in biomass burning regions in GEOS, there is an overestimate in the surface mass of organic carbon in the United States, 

especially during the summer months. 

1 Introduction 

Aerosols are an important component of the atmosphere, with implications for air quality, cloud lifecycle, and the 30 

radiation budget. As general circulation models strive to take a comprehensive Earth-system approach, aerosol modules have 

become coupled to the atmosphere for use in numerical weather prediction (Colarco et al., 2010; Rémy et al., 2019), seasonal 

prediction (Molod et al., 2020), and reanalyses (Buchard et al., 2017; Randles et al., 2017), and have been shown to increase 
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forecast skill through changes in temperature (Bozzo et al., 2020). Aerosol modules handle the sources, sinks, and chemistry 

within models; however, they vary in complexity and their diverse assumptions result in uncertainty and diversity in the 35 

simulated aerosol life cycle and optical properties (Textor et al., 2006; Tsigaridis et al., 2014; Gliß et al, 2021). Modelled 

aerosols are driven by emissions that are prescribed, as is the case for smoke and anthropogenic emissions, or calculated by 

parameterizations coupled with meteorological fields, such as for sea salt and dust. Choices for which dataset or 

parameterization to use can have a large impact on the modelled aerosol loading. For example, uncertainty arises for biomass 

burning, where six commonly used emission datasets were found to differ by a factor of 3.8 (Pan et al., 2020), and dust optical 40 

depth model diversity is dominated by the simulated dust source strength (Kim et al., 2019).  

Aerosol modules also require assumptions regarding the number of aerosol species, size of aerosol particles, particle 

size-dependent gravitational settling, and particle swelling in response to changes in relative humidity. Simpler aerosol bulk 

aerosol models typically prescribe sizes and lack microphysical processes found in modal (eg. Liu et al., 2016) and sectional 

schemes (eg. Yu et al., 2015). Among the global models included in the International Cooperative for Aerosol Prediction 45 

(ICAP) multi-model ensemble (MME) study, there is variability in the species, particularly related to nitrate and biomass 

burning smoke, as well as the number of size bins used to discretize the particle size distribution for a given species (Table 1 

of Xian et al., 2019). The settling for each size bin can follow the same size-based parameterization for each bin or settle at 

different rates depending on the size bin. While some aerosols are hydrophobic, others swell in the presence of water vapor, 

which can affect particle settling speeds and optical properties. A large range in the scattering enhancement factor as a function 50 

of relative humidity, f(RH), was found in a comparison of ten Earth system models (Burgos et al., 2020), which can result in 

varying aerosol extinction even where aerosol loadings are similar.  

A commonly used bulk aerosol module is the Goddard Chemistry Aerosol Radiation and Transport (GOCART) 

module, which traces its origin to an offline aerosol transport model driven by the assimilated meteorological fields from the 

Goddard Earth Observing System (GEOS; Chin et al. 2002, 2014). GOCART was later coupled to GEOS to enable short-term 55 

aerosol forecasts and provide a platform for aerosol data assimilation (Colarco et al., 2010). It has also been implemented in 

NOAA’s Unified Forecast System (Lu et al., 2016, Zhang et al., 2022) and the Weather Research and Forecasting Model 

(WRF). In its legacy form, GOCART has handled the sources, sinks, and chemistry of externally mixed aerosols within the 

GEOS model and its individual systems. Near real-time aerosol forecasts began in GEOS Forward Processing in 2011 (Figure 

S1), though GOCART had previously been used within GEOS for field campaign support. An aerosol analysis has been 60 

produced retrospectively in reanalysis systems such as the Modern Era retrospective Analysis for Research and Applications, 

Version 2 (MERRA-2, Randles et al. 2017, Buchard et al. 2017). Though GOCART has evolved over the past two decades, a 

recent overhaul of the module has been completed to pave the way for future development.  

This paper serves to document updates that have been implemented in GOCART since the production of MERRA-2, 

including a suite of science changes and code improvements that encompass GOCART second generation (GOCART-2G). A 65 

four-year simulation is then evaluated in Section 4 to benchmark the performance of GOGART-2G and provide a reference 

for future development of aerosol modelling within GEOS. One major difference between the evaluation presented here 
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compared to prior evaluations of aerosols within GEOS from the MERRA-2 system (Randles et al. (2017); Buchard et al. 

2017) is that here, aerosol optical depth (AOD) is not assimilated, like Colarco et al. (2010). While meteorology is constrained 

in the benchmark simulation, no aerosol data assimilation is included, and aerosol distributions are governed solely by 70 

processes in the model. GOCART-2G is intended to be used in future versions of GEOS FP and reanalysis products with 

GEOS, hence the need for proper documentation and evaluation. 

2 GOCART aerosol module in GEOS  

2.1 Background 

GOCART-2G includes seven radiatively active aerosol tracers that are considered externally mixed: sea salt, dust, 75 

organic carbon, brown carbon, black carbon, sulphate, and nitrate. Like in MERRA-2, sea salt (SS) and dust (DU) are 

comprised of five non-interacting size bins (Table A1). Sea salt emissions are based on Gong (2003), with some key 

modifications: 1) friction velocity is used instead of 10 m wind speed, which required tuning for the constants within the 

parameterization, and 2) addition of a correction term dependent on sea surface temperature, similar to the work of Jaegle et 

al. (2011) but tuned to improve the agreement of simulated sea salt AOD with MODIS retrieved AOD.  Default dust emissions 80 

follow Ginoux et al. (2001), see Table 1. The smallest size bin for dust is further divided into four sub-bins for optics 

calculations according to Tegen and Lacis (1996). Organic (OC), brown (BR), and black (BC) carbon have hydrophobic and 

hydrophilic components. Upon emission, 50% of organic carbon, 50% of brown carbon, and 80% of black carbon are 

considered hydrophobic (Chin et al., 2002) and transition to hydrophilic at a e-folding time scale of 2.5 days (Maria et al., 

2004). A factor of 1.8 is implemented upon emission to convert organic carbon, including the tracer for brown carbon, to 85 

particulate organic matter (POM), which has been increased from the factor of 1.4 used in MERRA-2 based on observations 

from recent airborne campaigns (Hodzic et al., 2020). Emission sources of carbonaceous aerosol include biomass burning, 

biogenic, and anthropogenic emissions. Biomass burning emissions are released uniformly throughout the planetary boundary 

layer (PBL) depth, while anthropogenic emissions enter only in the lowest model level. While the source data for biomass 

burning emissions is consistent with MERRA-2, anthropogenic emissions now come from the Community Emissions Data 90 

System (CEDS) v_2021_04_21 (Table 1; Hoesly et al., 2018; doi: 10.5281/zenodo.4741285); currently CEDS emissions are 

available up to 2019. Additional information is provided in Section 2.2 pertaining to the implementation of brown carbon and 

secondary organic aerosol (SOA) as these tracers were added as part of GOCART-2G.  

A single tracer is used for the sulphate ion, SO4
2-. Volcanic emissions of SO2 are from Carn et al. (2017) with explosive 

emissions updated through 2021 as of this writing, while biomass burning and anthropogenic emissions of SO2 and SO4
2- are 95 

consistent with the carbon emissions (Table 1). Sulphate chemistry follows Chin et al. (2000) in which sulphate is formed from 

the oxidation of SO2 and the precursor dimethyl sulfide (DMS) in the presence of hydroxide (OH) and NO3 and aqueously via 

titration of hydrogen peroxide (H2O2). In a traditional GOCART-2G simulation, these oxidant fields are provided in archived 
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monthly data from previous full chemistry simulations and the diurnal cycle is imposed on the OH field. GOCART-2G can 

also run interactively with a gas chemistry module in which these oxidant fields are updated at every time step. 100 

Nitrate was incorporated into GEOS in 2017, after production began for MERRA-2, based on the approach used for 

the Global Modeling Initiative (GMI) chemistry transport model (CTM) (Bian et al. 2017). Three particle size groups are 

included for nitrate aerosol in GOCART-2G: a fine mode bin and two coarse mode bins (Table 1 in Bian et al., 2017). The 

fine mode bin for nitrate is simulated using the thermodynamic equilibrium model Regional Particulate Model Aerosol 

Reacting System (RPMARES) (Saxena et al., 1986) for the gas phase, aqueous chemical cycling of nitrate gas-aerosol 105 

partitioning in a system of 𝑆𝑂4
2− − 𝑁𝑂3

− − 𝑁𝐻4
+ −𝐻2𝑂 (Table 2 in Bian et al., 2017), and a first order heterogenous reaction 

of HNO3 on mineral dust and sea salt. The two coarse mode bins form from heterogenous production only. Additional tracers 

are included for ammonia (NH3) and the ammonium ion (NH4
+) that are necessary for the SO4

-2-NO3
--NH4

+-H2O system. 

Biomass burning, anthropogenic, and oceanic emissions of NH3 prescribed from emission datasets (Table 2). Precursor gases 

for sulphate and nitrate are prescribed based on a prior MERRA-2 replay coupled to the GMI stratosphere-troposphere 110 

chemical mechanism (MERRA-2 GMI; Strode et al., 2019).  

 

Table 1. Summary of aerosol emissions in the GOCART-2G benchmark simulation. GOCART-2G can be run with differing 

emissions sources and dataset resolutions if desired. 

Emission Type Species Source Temporal Resolution Spatial Resolution 

Anthropogenic 

(including ship and 

aircraft) 

OC, BC, SO2, 

SO4, NH3 

CEDS (doi: 

10.5281/zenodo.4741285) 

Monthly  

 

0.5, downscaled to 

0.15625 

Biomass Burning BR, BC, SO2, 

NH3 

QFED v2.5r1 (Darmenov 

and da Silva, 2015) 

Daily, with a fixed 

diurnal cycle based on 

latitude 

0.1 

Volcanic SO2 Carn et al. 2017 Daily Eruptive and 

Outgassing  

Point-sources 

Dust DU Wind driven (Ginoux et 

al., 2001) 

Model Model Resolution 

Sea Salt SS Wind driven (Gong, 2003; 

Jaegle et al., 2011) 

Model Model Resolution 

Species prescribed 

for aerosol 

chemistry 

H2O2, OH, NO3, 

HNO3 

MERRA-2 GMI (Strode 

et al, 2019) 

Monthly 0.5 x 0.625 

DMS Lana et al. (2011); Liss 

and Merlivat (1986) 

Monthly 0.5 x 0.625 

Open Ocean NH3 Bouwman et al. (1997) Monthly 0.5 x 0.625 

 115 

Table 2. Summary of aerosol parameterizations in GOCART-2G 

Function Specie(s) Parameterization 

Boundary Layer Turbulent Mixing All Lock et al., 2000; Louis, 1979 

https://doi.org/10.5194/gmd-2023-129
Preprint. Discussion started: 10 August 2023
c© Author(s) 2023. CC BY 4.0 License.



5 

 

Moist Convection All Grell and Freitas, 2014 

Settling Velocity All Fuchs, 1964 

Dry Deposition All Wesely, 1989 

Wet Deposition All Giorgi and Chameides, 1986; 

Balkanski, et al. 1993; Liu et al., 2001 

Optical Properties All Hess et al., 1998; Colarco et al., 2014; 

Colarco et al., 2017 

Sulphate Chemistry Sulphate Chin et al. 2000 

Nitrate Chemistry Nitrate Bian et al. 2017; Saxena et al., 1986 

 

Optics look up tables (LUTs) to convert from the simulated aerosol masses to optical quantities such as aerosol optical depth 

(AOD) are derived from Mie (spherical) calculations using parameters from the Optical Properties of Aerosols and Clouds 

(OPAC; Hess et al., 1998) and as described in Chin et al. (2002) and Colarco et al. (2010), except for dust, which is based on 120 

Colarco et al. (2014), and for brown carbon (see below). Optical properties are a function of aerosol species, particle size, and 

relative humidity (except for dust which is assumed hydrophobic). From an optics perspective, hygroscopic growth occurs 

based on a specified growth factor as listed in the Appendices of Kemppinen et al. (2022). The resulting optics tables are 

available for download at https://portal.nccs.nasa.gov/datashare/iesa/aerosol/AerosolOptics/ (last access 5 December 2022) 

and the versions used in the initial release of GOCART-2G are given in Table A2. These high spectral resolution tables are 125 

useful for computing diagnostic optical quantities like AOD and backscatter, as shown later. They are also available in an 

aggregated format to provide optical properties needed to compute aerosol forcing at the spectral bands used in the model’s 

radiative transfer code, RRTMG (Clough et al., 2005; Iacono et al., 2008). 

2.2 Updates to Aerosol Speciation 

 Three major changes with regards to aerosol speciation were implemented as part of GOCART-2G. Brown carbon 130 

was added as a new radiatively active sub-species of carbon. Secondary organic aerosol (SOA) is now used to form brown and 

organic carbon from volatile organic carbon (VOC). Finally, a mechanism to produce sulphate in the stratosphere has been 

added. Additional details pertaining to these updates are given in the remainder of this section.  

2.2.1 Implementation of Primary Organic Aerosol 

Beginning with GOCART-2G, a distinction is made between “non-absorbing” anthropogenic and “absorbing” (also 135 

referred to as “brown”) biomass burning organic aerosol. Anthropogenic emissions of organic carbon, which are emitted based 

on CEDS, are solely considered to be “non-absorbing” organic carbon, with spectral optical properties that follow the OPAC 

database and are as in Chin et al. (2002) and Colarco et al. (2010). Biomass burning emissions of organic carbon from QFED 

are considered absorbing “brown” carbon and assigned optical properties that have spectrally varying absorption at 
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wavelengths shorter than 550 nm as described in Colarco et al. (2017). This distinction was found in Colarco et al. (2017) to 140 

improve the comparison of the absorbing aerosol-sensitive aerosol index between the model and data retrieved from the Ozone 

Monitoring Instrument (OMI) onboard the NASA Aura spacecraft. The optical properties between our absorbing and non-

absorbing organic aerosol components are identical at wavelengths equal to and greater than 550 nm and treated by identical 

chemical and loss processes in the model. 

2.2.2 Implementation of Secondary Organic Aerosol 145 

A simplified SOA mechanism is employed that scales VOC emissions in terms of carbon monoxide (CO) emissions 

from anthropogenic and biomass sources. Following Kim et al. (2015) we assume production of anthropogenic VOC at a rate 

of 0.069 g (g CO)-1 and biomass burning VOC at a rate of 0.013 g (g CO)-1. The VOC tracers are advected and assumed to 

convert to SOA via reaction with the prescribed MERRA-2 GMI OH fields with a rate constant of 1.25x10-11 cm3 molecule-1 

sec-1 (Hodzic and Jimenez, 2011). The SOA produced is apportioned to the hydrophilic modes of organic (anthropogenic) and 150 

brown (biomass burning) carbon. Biogenic aerosols, including isoprene, monoterpene, and other terpenes are provided from 

the Model of Emissions of Gases and Aerosols from Nature (MEGAN; Guenther et al., 2012) and enter the model through the 

Harvard–NASA Emission Component software (HEMCO, Keller et al., 2014) and are assigned to the hydrophilic mode of the 

organic carbon component. Unlike anthropogenic and biomass burning SOA that are produced in the air via the reaction of 

VOCs and OH, biogenic SOA is produced by scaling MEGAN emitted VOCs at the point of emission. 155 

2.2.3 Implementation of Stratospheric Sulphate Aerosol 

 An optional simplified stratospheric sulphate mechanism is implemented following the mechanism described in 

English et al. (2011). A tracer for carbonyl sulphide (OCS) is added to the model with a specified surface mixing ratio boundary 

condition of 490 pptv. OCS is largely inert in the troposphere and the model has been spun up so that a well-mixed distribution 

is achieved. Photochemical destruction of OCS is managed by the stratospheric chemistry package StratChem described in 160 

Nielsen et al. (2017). The reactions considered include binary consumption of OCS by OH and atomic oxygen, O(3P), and 

photolytic destruction of OCS (the dominant process), using rate constants from Sander et al. (2011). The sulphur is assumed 

oxidized to SO2 and then passed to GOCART, which computes the sulphate aerosol production using the same series of 

reactions as above for the tropospheric sulphate aerosol production. This mechanism provides us a simplified representation 

of the naturally occurring background stratospheric sulphate. While this mechanism is included in the benchmark experiment 165 

analysed in Section 4, it is currently not intended for use in a typical model simulation such as what is used to produce GEOS 

FP.  

2.3 Code Refactoring 

 A major refactoring of the GOCART source code was completed to improve performance, flexibility, and code quality 

within GOCART-2G. GOCART has been split into its own repository (https://github.com/GEOS-ESM/GOCART.git) with 170 

specific low-level interfaces that do not depend on the Earth System Model Framework (ESMF, 

https://earthsystemmodeling.org) and are independent of the overall GEOS architecture. This allows for code to be effectively 

https://doi.org/10.5194/gmd-2023-129
Preprint. Discussion started: 10 August 2023
c© Author(s) 2023. CC BY 4.0 License.



7 

 

shared with external organizations. Performance was enhanced through optimization of settling and nitrate chemistry 

parameterizations, eliminating extraneous calculations, and removing known bugs. The other code refactoring consisted of 

eliminating non-standard Fortran, eliminating redundant and legacy constructs, reducing duplicated logic within and across 175 

components, implementing cleaner component resource files, improving procedure and variable names in the source code to 

make the intent obvious to users and developers, and splitting large procedures with well-defined responsibilities.  

 A large component of the refactoring involved more widespread adoption of the ESMF within the parent GOCART-

2G component. Improved flexibility within the code is essential for future development of GOCART-2G within GEOS. 

Carbon, sulphate, nitrate, sea salt, and dust, now have their own ESMF components and can instantiate multiple active and/or 180 

passive instances at one time; an active instance participates in the physical coupling with the host model. For example, 

carbonaceous aerosol is one of GOCART-2G’s children and black, brown, and organic carbon are each run as an active instance 

of the carbonaceous aerosol component. Previously, GOCART provided aerosol optical properties at the specific bands 

required by the radiation package, but diagnostic file output was restricted to the 550 nm wavelength. To better support data 

assimilation of multi-wavelength aerosol data, the model is now able to directly output aerosol optical properties at multiple 185 

wavelengths without the need for an offline utility. The model is also able to output stratospheric AOD using the GEOS 

tropopause height.  

3 Observational Datasets Used for Model Evaluation 

3.1 Moderate Resolution Imaging Spectroradiometer (MODIS) Neural Net Retrieval (NNR) 

Here we evaluate AOD at 550 nm in GOCART-2G using observations from Collection 6.1 of the Moderate Resolution 190 

Imaging Spectroradiometer (MODIS) aboard the Aqua satellite (Levy et al., 2015). The particular MODIS dataset used for 

this evaluation is the Neural Net Retrieval (NNR) described in Section 3.2.2 of Randles et al. (2016), which bias corrects and 

homogenizes MODIS observations to be consisted with AERONET.  THE NNR algorithm relies on cloud-cleared, gas-

corrected reflectances used by the Deep Blue (Sayer et al., 2019) and Dark Target (Remer et al., 2020) retrievals and uses a 

neural net trained on co-located AERONET direct sun AOD measurements. The monthly mean NNR AOD retrievals are 195 

obtained by a weighted average based on the number of pixels available for a given 0.25 latitude by 0.3125 longitude grid 

box. The same NNR-based analysis was also carried out for the Terra satellite, complemented by additional measurements 

from the Multi-angle Imaging SpectroRadiometer (MISR); these results are presented in the supplemental material.  GEOS 

has been sampled such that model data is only included when and where MODIS observations are available at the three hourly 

timestep of the MODIS NNR product.  200 

3.2 AERONET 

The AErosol RObotic NETwork (AERONET) is a collection of ground-based stations equipped with Cimel sun 

photometers for measuring spectral sun irradiance and sky irradiances (Holben et al., 1998). Under cloud-free conditions, AOD 
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is computed as the total optical depth measured by the sun photometer minus the contribution from Rayleigh scattering and 

trace gases. For comparison to GEOS, Version 3 of the Level 2 product, which includes cloud screening, is utilized (Giles et 205 

al., 2019). Although AERONET provides spectrally varying AOD, only AOD at 550 nm is examined in addition to the 

Angstrom exponent computed using 470 nm and 870 nm. For stations that do not report AOD at 550 nm, the Angstrom 

exponent for 440 nm and 675 nm is used to convert the AOD at 500 nm to 550 nm. 

3.3 OMPS-LP 

 The Ozone Mapping and Profiler Suite (OMPS) aboard the Joint Polar Satellite System (JPSS) Suomi National Polar-210 

orbiting Partnership (S-NPP) satellite contains a limb profiler (LP) that can observe aerosol with the stratosphere. Stratospheric 

AOD at 869 nm is evaluated using observations from OMPS-LP (Taha et al., 2021) to validate volcanic eruptions and 

pyrocumulonimbus (PyroCB) reaching the stratosphere. The data from OMPS LP are presented as the daily, zonal mean of 

the stratospheric AOD, evaluated by integrating the retrieved extinction from the GEOS-derived tropopause altitude to the 40 

km top altitude of the OMPS LP retrievals. Data are not available during periods of instrument issues and under low/no-sun 215 

conditions (e.g., polar night). Although the algorithm includes cloud screening, some polar stratospheric clouds are evident in 

the dataset, as shown below. 

3.4 CALIOP 

Since 2006, the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP), aboard NASA's CALIPSO ATrain 

satellite (Winker et al., 2007, 2009), has provided insights about aerosol vertical structure. For this study, the highest-quality 220 

lidar Level 1.5 standard data product version V1.00 was employed (NASA, 2019): a cloud-cleared dataset with a 20 km 

horizontal and 60 m vertical resolution for a height up to 20.2 km. The observations include contributions from both aerosols 

and gas molecules (Rayleigh scattering), so our analysis is limited to the total (aerosols + molecular) attenuated backscatter 

coefficient. 

3.5 Surface Particulate Matter from IMPROVE and EMEP 225 

Like in Buchard et al. (2016) and Provençal (2017), surface aerosol mass is evaluated over the United States using 

data provided by the Interagency Monitoring of Protected Visual Environments (IMPROVE, 

http://vista.cira.colostate.edu/Improve/) Program and over Europe using data from the European Monitoring and Evaluation 

Programme (EMEP, https://ebas.nilu.no/). IMPROVE and EMEP monitoring sites are typically located in rural areas 

representative of the region and with minimal influence from localized urban pollution.  Following the module description for 230 

the IMPROVE network (Hand et al., 2011), PM2.5 in GOCART-2G was computed using the equation below for aerosol with 

an aerodynamic diameter of 2.5 microns (Collow et al., 2023). Variable names in the equation are consistent with those given 

in the file specification document for GEOS Forward Processing (Lucchesi, 2018). The multiplication factors of 0.9614 for 

bin 1 of dust and 0.3871 for bin 3 of sea salt account for a conversion to aerodynamic diameter and the fact that only a portion 

https://doi.org/10.5194/gmd-2023-129
Preprint. Discussion started: 10 August 2023
c© Author(s) 2023. CC BY 4.0 License.



9 

 

of the bin is smaller than 2.5 microns. Though not done here, other studies have used the entirety of bin 1 for dust in comparison 235 

to IMPROVE observations due to a wide range in the shape factor for dust (Kim et al., 2021). 

 

Reconstructed PM2.5 is given by 

 

 PM2.5 = 0.9614*DU001 + fss,rh*(SS001+SS002+ 0.3871*SS003) +  240 

           + OCPHOBIC + BCPHOBIC + BRPHOBIC + foc,rh * OCPHILIC + 

           + fbc,rh * BCPHILIC + fbr,rh * BRPHILIC +  fsu,rh * SO4 + fni,rh * NH4a + fni,rh * NO3an1 

 

where the growth factor with relative humidity, fx,rh, for each species is calculated as 

𝑓𝑥,𝑟ℎ   =  1 + (((
𝑟𝑟ℎ
𝑟0
)
3

− 1)  𝑥 
𝜌𝑊𝑎𝑡𝑒𝑟

𝜌𝐷𝑟𝑦 𝑆𝑝𝑒𝑐𝑖𝑒𝑠
) 245 

using the radius specified for a given relative humidity from the optics files listed in Table 4 as rrh and the radius at 0% 

relative humidity for r0. 

 

Following their respective documentations, PM2.5 for the IMPROVE sites in the United States was computed using a 

relative humidity of 35% (Hand et al., 2011) while PM2.5 for the EMEP sites in Europe was computed using a relative humidity 250 

of 50%. GEOS was sampled according to when and where observations were available. Note that IMPROVE observations are 

collected every three days while data from EMEP ranges in temporal frequency from one hour to six days. EMEP observations 

are also not homogeneous with respect to the instruments and measurements of individual aerosol species at each site.  

4 Evaluation of GOCART-2G 

A benchmark simulation for GOCART-2G was carried out for the period of 2016 through 2019 using GEOS Release 255 

10.23.0 (https://github.com/GEOS-ESM/GEOSgcm/releases/tag/v10.23.0) on a cubed-sphere c180 grid (~0.5° spatial 

resolution) with 72 vertical levels. Meteorology, particularly atmospheric temperature, specific humidity, and winds were 

replayed to the analysis from MERRA-2 (Gelaro et al., 2017), while boundary conditions for sea surface temperature and sea 

ice concentration were from the Reynolds analysis (Reynolds et al., 2002). Two pyroCb events were included in the simulation 

for British Columbia in 2017 (Torres et al., 2020; Das et al., 2021) and Australia in late December 2019 (Schwartz et al., 2020). 260 

There is no assimilation of aerosol optical depth or observational constraint for aerosol extinction or mass. Therefore, all 

observations used for comparison are independent from the model simulation.  
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4.1 Aerosol Mass Budget 

 Emissions and production from each aerosol species are presented in Figures 1 and 2. Wind-driven dust is emitted 

primarily over Saharan Africa, Saudi Arabia, the Asia deserts, the Simpson desert of Australia, and the southern tip of South 265 

America (Figure 1a), in agreement with Colarco et al. (2010), Randles et al. (2017) and Rémy et al. (2019). The seasonal cycle 

of dust emissions peaks in boreal spring and is minimized during the fall months (Figure 2a). Most dust is deposited near the 

source regions, however there is notable transport of Saharan dust across the Atlantic Ocean (Figure 3a). 

 Sea salt emissions are enhanced along the northern and southern hemisphere storms tracks as well as the Intertropical 

Convergence Zone (ITCZ), with little variability across the seasonal cycle. While the spatial pattern is similar, sea salt 270 

emissions have decreased from MERRA-2 (Randles et al., 2017). In a correction since MERRA-2, sea salt is not emitted over 

the Great Lakes or Caspian Sea. Most sea salt is emitted in the coarse mode, with the largest contribution from bin 3 (mode 

radius of 2.4 m). Relative to the largest three bins, emissions from bins 1 and 2 are negligible to the total mass (Figure 2b). 

Nearly all sea salt is deposited over the ocean, in elevated quantities over the storm tracks and ITCZ (Figure 3b). 

 Carbonaceous aerosol is emitted over land (Figure 1b-d), with a seasonal cycle that peaks in the boreal summer due 275 

to the temporal variability in biomass burning (Figure 2c-d).  Anthropogenic emissions account for, on average, 62% of the 

total black carbon emissions and 21% of the organic aerosol emissions. Brown carbon, emitted through biomass burning, 

ranges from 37% to 65% of the monthly emissions of organic aerosol. There is also a contribution of brown carbon produced 

from SOA.  

 Sulphate is directly emitted within GEOS from the anthropogenic emissions and has a contribution that is produced 280 

from the oxidation of dimethyl sulphide (DMS), methane sulfonic acid (MSA), and sulphur dioxide (SO2). Emission and 

production of sulphate is maximized in densely populated areas including China, India, Europe, and the Eastern United States 

(Figure 1e). Anthropogenic emission of SO2 is the largest contribution to sulphate production and is responsible for the subtle 

downward trend of sulphate production over the four-year timeseries. The summertime peaks in sulphate production during 

2018 and 2019 are in response to the explosive volcanic eruptions of Kilauea in May 2018 and Raikoke in June 2019 (Figure 285 

2e) while the broader summertime peaks in gaseous production of sulphate are associated with biomass burning emissions of 

SO2.  

 Nitrate aerosol is not directly emitted. Most nitrate forms in response to heterogenous production on dust and sea salt 

aerosols (Figure 2f). A somewhat bimodal seasonal cycle in the production of nitrate occurs due to spring and fall peaks in the 

emission of ammonia (NH3). Due to the anthropogenic and agricultural nature of ammonia emissions, the spatial pattern of 290 

nitrate deposition is very similar to that for organic and brown carbon. Most nitrate aerosol is deposited close to the source 

while some is transported over the ocean by the atmospheric circulation (Figure 3f). 
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4.2 Comparison to Observational Datasets 

4.2.1 Satellite Based Aerosol Optical Depth 295 

 A broad, global comparison of the AOD between MODIS and GEOS is shown in Figure 4. The model performs well 

over the ocean, however there are notable biases over land. AOD is too high in GEOS across northern Africa and Saudi Arabia, 

suggesting there could be too much dust in the model. Although smaller in magnitude, the overestimate in AOD extends into 

the central Atlantic due to transported dust. The positive bias in AOD is larger in magnitude when GEOS is compared to 

MODIS aboard Terra relative to Aqua and suggests there could be a further issue with the diurnal cycle of dust emissions 300 

(Figure S2). However, this positive bias in AOD in dusty regions is not as large when GEOS is compared to MISR 

(Supplemental Figure S3) or AERONET (Figure 9, shown later). Conversely, a negative bias in AOD is present in the northern 

hemisphere boreal regions that is larger in magnitude when the comparison is made to Aqua.   

Monthly mean timeseries of global mean AOD over ocean, in addition to the mean seasonal cycles, can be found in 

Figure 5. In the top two panels, the solid black line represents the MODIS observations while the coloured shading accumulates 305 

the optical depth for each aerosol species in GEOS. Though difficult to see in the global spatial map, it is evident that AOD is 

underestimated in the model over the ocean. There is a seasonal cycle in the bias such that it is maximized during the months 

of March, September, and October and minimized during the boreal summer and winter (Figure 5d). MODIS indicates a 

bimodal seasonal cycle for total AOD, with one peak in the Northern Hemisphere late winter and early spring that is not present 

in GEOS, and another during the summer that persists later into the season than in the model. The largest contribution to the 310 

total AOD comes from sea salt and in agreement with the fact that emissions cover a large fraction of the domain, there is little 

temporal variability in the optical depth for sea salt. Peaking in April, nitrate makes up the smallest contribution to the total 

AOD over the ocean. Peaks in sulphate are present in the boreal summers of 2018 and 2019, coincident with peaks in the 

gaseous production of sulphate due to large volcanic eruptions as shown in Figure 2e. 

The analysis of AOD over land is broken down into eight continental scale regions. A spatial map demonstrating the 315 

geographic extent of each region is in the supplemental document (Figure S5). Beginning with North Africa in Figure 6a, the 

region is dominated by dust that typically peaks in the spring and summer months. GEOS can produce the observed temporal 

variability in AOD; however, the magnitude of AOD is higher than MODIS throughout the entire timeseries. This is likely due 

to an overestimate of dust emissions.  

GEOS underestimates the AOD in South Asia, North America, South America, Siberia, and Europe (Figure 6d-h). 320 

The Americas, Siberia, and South Asia are influenced by biomass burning aerosol. Biomass burning aerosol is often 

underestimated in models, including GEOS, and in many cases have errors due to assumptions made for the particle properties 

(Zhong et al., 2022 and references within).  Collow et al. (2022) demonstrated the GEOS struggles to match the observed mass 

extinction efficiency within a smoke plume. It is likely that the negative bias in these regions is in response to biomass burning 

aerosol. Europe and South Asia are more complicated due to higher relative proportions of dust and sulphate. Dust emissions 325 

are tuned in GEOS using a global metric. It is therefore plausible that there are errors in the transport of dust to Europe and the 
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overall life cycle of dust from Asian deserts such as the Gobi and Taklamakan Deserts. A lack of the negative bias in AOD 

over South Asia in comparison to Terra indicates the underestimation of AOD in GEOS contains a diurnal cycle (Figure S6d).  

GEOS completely misses the observed seasonal cycle in AOD over Europe. For this reason, Europe was further 

divided into subregions as indicated by Figure 7 (See Figure S8 for the geographical depiction of the subregions). There is 330 

decent agreement in AOD between MODIS and GEOS over the Iberian Peninsula and Scandinavia. Conversely, GEOS does 

not capture the summertime maxima in AOD across central Europe or the United Kingdom.  This will be further elaborated 

upon through a comparison with AERONET observations in Section 4.2.2 and an evaluation of surface mass in Section 4.2.4. 

There is remarkable agreement in the AOD over South Africa and Australia with GEOS capturing the seasonal cycle 

and magnitude from the observations (Figure 6b-c). The fact that South Africa is also dominated by biomass burning aerosol 335 

but does not have the negative bias seen in other biomass burning regions suggests there could be an overestimate of AOD due 

to another species or that the optical properties for brown and organic carbon in GEOS are better suited for the fuel types 

burned in Africa rather than the boreal forests of North America and Siberia and the rainforests of South America. 

 

4.2.2 AERONET 340 

 Representative AERONET stations were selected for evaluation based on a comparison among dozens of stations in 

North America, Europe, and northern Africa.  Due to the poor agreement in the seasonal cycle of AOD in Europe between 

GEOS and MODIS, Mainz, Germany was selected as the site demonstrates characteristics of others in the area. The AERONET 

site is adjacent to both rural and urban landscapes and is in a moderately to highly polluted region. In agreement with the 

comparisons to MODIS, GEOS tends to underestimate the AOD with respect to the AERONET observations and has a mean 345 

negative bias of 0.28, in log space, that tends to be larger in magnitude during the summer months (Figure 8). In addition to 

smaller values of AOD occurring more frequently in GEOS compared to the observations, there is also less variability in the 

AOD. GEOS has a better agreement for the Angstrom Exponent, computed using 440 nm and 675 nm, accurately having the 

dominant aerosol in the fine mode. Potential reasons for the underestimate in AOD may be a lack of emissions from smaller 

scale sources that are not represented in the CEDS dataset or insufficient biomass burning aerosol that is transported from 350 

North America. 

 Comparisons between GEOS and AERONET stations across northern Africa and Saudi Arabia are consistent with 

respect to the mean bias in the model relative to MODIS NNR. Tamanrasset was chosen for additional evaluation since it is in 

northern Africa where GEOS overestimates AOD compared to MODIS (Figure 9). The AERONET site is in the highlands of 

the Algerian Sahara, away from industrial activity, making dust the primary aerosol species. Here, there is a positive mean 355 

bias in the modelled AOD of 0.18 and a reasonable correlation between GEOS and AERONET of R=0.84, computed using 

log(AOD+0.01) (Figure 9b). GEOS overestimates the AOD when the AERONET observations lie between 0.1 and 0.5 as 

demonstrated in Figure 9b.  Agreement between the model and observations is not as good for the Angstrom exponent as the 
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correlation is only 0.48 and there is a mean bias of -0.15, indicating that aerosol in the model is often coarser than seen by 

AERONET. 360 

 As shown in the comparison to MODIS, Southern Africa is dominated by biomass burning aerosol. Mongu, located 

in central south Africa within Zambia, was selected as a representative site for smoke. Despite good agreement between GEOS 

and MODIS on a continental scale for Southern Africa, there is considerable underestimation in AOD within the model when 

compared to AERONET at a local scale (Figure 10a and b). This is especially the case for the southern hemispheric winter 

months when biomass burning is prevalent. The correlation of 0.85 at Mongu is on par with what was reported for the 365 

M2Replay, a MERRA-2 like simulation without the assimilation of AOD, in Randles et al. (2017). As shown by the kernel 

density estimate in Figure 10b, the correlation between the observations and GEOS is weaker for lower values of AOD. GEOS 

has a smaller amplitude in the Angstrom exponent such that there is an underestimate during the southern hemisphere summer 

months (Figure 10c). GEOS is likely correctly characterizing the July peaks in AOD as biomass burning aerosol but is missing 

coarse mode aerosols, perhaps dust, during the warmer months.  370 

 The AERONET station in Langley, Virginia demonstrates behaviour typical of other stations and is close to the 

national average timeseries for AOD across the United States. Located on the southern tip of the Chesapeake Bay less that 40 

km from Norfolk, Virginia, the Langley AERONET site often experiences urban and marine aerosol regimes, with occasional 

intrusions of smoke and dust. At this station, GEOS overestimates the lower values of AOD and underestimates the higher 

values of AOD (Figure 11a), giving a poorer correlation than at the sites in Europe and the Sahel (Figure 11b). GEOS does 375 

not have as much variability in the Angstrom exponent as the observations but accurately represents that there is fine mode 

aerosol. A summary for 77 AERONET stations across the United States and Canada is given in the form of a kernel density 

estimate in Figure 12.  Numerous stations underestimate AOD during the summer months, in agreement with the MODIS 

evaluation. Exceptions to this are stations in the desert southwest including Tucson, Flagstaff, Table Mountain CA, and USC, 

where GEOS simulates higher AOD than AERONET. These stations are characterized by a measured AOD below national 380 

average (Figure S11). 

4.2.3 OMPS-LP Stratospheric AOD 

 Newly added diagnostics in GOGART-2G include total aerosol scattering and extinction in the stratosphere, which 

allows for comparison to observations from OMPS-LP. Figure 13 shows the daily, zonal mean stratospheric AOD at 870 nm 

from OMPS LP (panel a) and the GEOS simulation (panel b). GEOS modelled fields are masked where OMPS LP does not 385 

report retrievals either due to polar night conditions, scattering angle filtering, or missing data from spacecraft operations 

issues. Note some high AOD values along the northernmost points hugging the polar night line, particularly evident in January; 

these are unfiltered polar stratospheric cloud artifacts present in the OMPS LP data set (Ghassan Taha, personal 

communication) not included in the GEOS simulation. Generally, the model reproduces the observed seasonal variability and 

magnitude of the stratospheric AOD and has markers for significant stratospheric perturbing events such as volcanic eruptions 390 

(Aoba in the tropics in 2018, Ulawun in the tropics in 2019, Raikoke at high northern latitudes in 2019) and pyrocumulonimbus 
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events (notably the British Columbia fires in high northern latitudes in late 2017). Even the seasonal variability evident exiting 

polar night is well captured in the model. Persistence of volcanic plumes following events however is not well captured in the 

model, suggesting difficulties with vertical placement and so long-range transport. 

4.2.4 Vertical Profile of Attenuated Backscatter 395 

To assess the vertical structure of aerosols in the GEOS-GOCART-2G model, we selected four regions of particular 

interest, as defined by Buchard et al. (2017). These included the dust transport region from northern Africa to the North 

Atlantic, the biomass burning regions of southern Africa and the Amazon, and an area over the continental United States. 

Figure 14 shows the June-July-August 2016 regional average of CALIOP 532 nm aerosol attenuated backscatter in black, and 

the corresponding attenuated backscatter sampled in space and time from GEOS-GOCART-2G in red (Supplemental figures 400 

S12-S15 show curtain plots of attenuated backscatter coefficients over the same regions). Generally, the GEOS-GOCART-2G 

attenuated backscatter profile tends to exhibit comparable vertical structure as CALIOP in all four regions of study. Notably, 

GEOS-GOCART-2G attenuated backscatter values agree well with CALIOP values within the CALIOP 25th-75th percentile 

range and their maximum values are located at around the same height.  

As observed in our MERRA-2 study (Buchard et al., 2017), near-surface attenuated backscatter is underestimated 405 

relative to CALIOP in the Northern and Southern African regions, particularly for sea salt type aerosols near the ocean (Figures 

S14-S15). This could be due to either errors in the aerosol mass or in the hygroscopic growth assumption during the conversion 

from aerosol mass to optical properties. Nonetheless, calibration errors in CALIOP needs also to be considered as they tend to 

accumulate near the surface, making it difficult to place too much confidence in CALIOP values near the surface. 

4.2.5 Surface Mass 410 

 Across the United States, surface particate matter is evaluated in GEOS relative to the IMPROVE network. GEOS 

overestimates PM2.5 throughout the entire period of 2016 through 2019 however the model is well correlated to the observations 

(Figure 15). The 2017 and 2018 wildfire seasons were particularly bad in the United States as indicated by the summertime 

maxima in PM2.5 in the IMPROVE observations and GEOS. The total fine surface matter is further divided into individual 

aerosol species in Figure 16. Like with the total PM2.5, sulphate aerosol is consistently overestimated in GEOS. The IMPROVE 415 

observations indicate a seasonal cycle in sulphate that peaks in the summer, which is muted in GEOS. GEOS also struggles 

with the seasonal cycle for fine mode nitrate, overexaggerating the summertime minimum and wintertime maximum. The 

largest contributor to the overestimate of PM2.5 in GEOS is organic carbon. During biomass burning events in the summers of 

2017 and 2018, the mean surface concentration of organic matter in the model exceeds the mean plus one standard deviation 

in the observations. Although the sampling differs, AOD is underestimated with respect to satellite observations during the 420 

same events (Figure 6e). This indicates either too much aerosol is at the surface and not transported higher in the atmosphere 

and/or the mass extinction efficiency for smoke is too low in the model. Dust suffers from the opposite problem. Both the 

mean and the variability are underestimated by GEOS, with the largest bias during the summer months. Dust emissions were 
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tuned for more prominent regions such as the Sahara Desert. It is likely the emissions are not representative for the soil 

conditions in the United States in addition to deficiencies in the long-range transport (Kim et al., 2019; Kim et al., 2021).   425 

 The European Monitoring and Evaluation Programme (EMEP) had 67 stations across Europe with PM2.5 data for the 

period of 2016 through 2019 however only a fraction of those also provided sulphate, nitrate, and carbon. There were no 

observations of dust available. Four representative stations within Germany and one in Poland have been selected due to their 

availability of data and consistency with instrumentation. GOCART-2G overestimates surface PM2.5, especially during the 

winter months (Figure 17). This is the opposite bias from Provençal et al. (2017) which evaluated the MERRAero reanalysis, 430 

and there are multiple reasons as to why there could be a larger aerosol concentration in the GOCART-2G simulations (which 

do not assimilated aerosol data).  Aside from investigating a later time period for a subset of stations, nitrate and brown carbon 

were not included in MERRAero, although data assimilation may have apportioned the mass adjustments to the represented 

species. Additionally, we used an aerodynamic diameter for the particle size and accounted for hygroscopic growth since the 

observations are acclimated to a relative humidity of 50% prior to being recorded, in contrast to the geometric diameter and 435 

assumption of dry aerosol used by Provençal et al. (2017). Relating the seasonal cycle of surface aerosol mass in Central 

Europe to the AOD in Figure 7d, there is an evident mismatch. 

 To further diagnose potential contributions to positive bias in PM2.5 over Europe, sulphate, nitrate, and carbon are 

evaluated. Like with PM2.5, all species are overestimated by the model (Figure 18). Most easily seen by comparing the spread 

between the 25th and 75th percentiles, GEOS captures the seasonal cycle of nitrate, organic carbon, and black carbon to some 440 

extent. The late winter peak in nitrate occurs a month two early in the model with a drastic decrease in the spring, perhaps 

indicating an issue with the emissions. While the seasonal cycle of carbonaceous aerosols is exaggerated in GOCART-2G, it 

correctly predicts a summertime minimum and a November maximum in black carbon. Given that PM2.5, sulphate, nitrate, 

and carbon are all overestimated in Europe, it is evident that there is a concern much larger than processes related to a single 

species, as was the case for the United States. With only five stations analysed, representativeness becomes a concern when 445 

comparing a single point to a box with a resolution of roughly 50 km. However, the site description for Melpitz, one of the 

stations used, states that the site is representative of the Central European background troposphere following comparison with 

multiple other sites (https://gawsis.meteoswiss.ch/GAWSIS/#/search/station/stationReportDetails/0-20008-0-MEL, last 

accessed 24 February 2023). Other plausible explanations include biases in the modelled planetary boundary layer height and 

aggressive hygroscopic growth to match a relative humidity of 50%.   450 

5 Discussion 

 GOCART, the underlying aerosol module within the Goddard Earth Observing System (GEOS) underwent an 

overhaul that coupled science changes with a code refactoring to enable future development of modelled aerosols within the 

system. Primary science changes focused on the introduction of the new radiatively active species, brown carbon, as well as 
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secondary organic aerosols. As part of the new species, MEGAN was coupled to HEMCO to provide biogenic emissions and 455 

the ratio of organic carbon to particulate organic matter was revised. 

 The modernization of GOCART-2G was necessary to enable future development. The use of multiple instances for a 

single species is employed for the three sub-species of carbon. This development could be expanded upon in future versions 

with, for example, ash as an additional instance of dust. The ability to have diagnostics provided in multiple user selected 

wavelengths is particularly useful for aerosol assimilation and facilitates the comparison of the model with other sensors, such 460 

as OMPS LP. At the present time, GEOS assimilates AOD at 550 nm. It is anticipated that additional wavelengths will be 

added for aerosol assimilation after GEOS transitions to a Joint Effort for Data assimilation Integration (JEDI) based system. 

Assimilated information pertaining to the Angstrom exponent will be highly beneficial, giving the model a sense of the aerosol 

speciation from the observations.  

 In its current form, GOCART-2G can reproduce observed aerosol properties but has some notable potential for 465 

improvement. The spatial pattern of AOD across the globe is generally captured and the magnitude and seasonal cycle of AOD 

agrees well with MODIS satellite observations. Conversely, regions characterized by dust or biomass burning aerosols have 

overestimated and underestimated AOD, respectively. Further evaluation of surface aerosol mass in the United States suggests 

the mass extinction efficiency for biomass burning aerosol is too low in GOCART-2G. This is corroborated by evaluations of 

GEOS with GOCART-2G using data collected from recent airborne field campaigns (Collow et al., 2022). 470 

 Though not discussed here, there are additional features of GOCART-2G that would benefit from future development. 

Bian et al. (2019) demonstrated a discrepancy in the particle size distribution for sea salt between GEOS and Particle Analysis 

by Laser Mass Spectrometry (PALMS) observations collected during the NASA ATom campaign. Although the largest two 

size bins for sea salt in GEOS were too coarse to be observed, it was evident that the model underestimated fine mode sea salt 

in the first two size bins. There are multiple papers in the literature that evaluate dust. Yu et al. (2020) noted that GEOS 475 

underestimated emissions of dust from haboobs and did not loft dust high enough into the middle troposphere for sufficient 

transport, resulting in an underestimate of the dust AOD in the Caribbean during a substantial dust event in June 2020. It was 

also pointed out by Kramer et al. (2020) that transported dust is overabundant in the boundary layer and has a particle size that 

is too large. There is also room for improvement in aerosol transport. As an example, Das et al. (2017) showed the biomass 

burning plume over the southeast Atlantic descends much too rapidly. With the flexibility and user-friendly refactored code 480 

implemented within GOCART-2G it is anticipated that aerosol model developers will be able to work together to progress 

GOCART such improvements can be seen within these features in future versions. 

Code Availability 

GEOS, including GOCART-2G, is a publicly available Earth System model with source code at https://github.com/GEOS-

ESM and https://doi.org/10.5281/zenodo.8059710. The archived code includes software to set up and run the model, compute 485 

AOD from MODIS Level 2 reflectances, and post process the model output.  
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Data Availability 

All observational data used are from publicly available datasets. MODIS Level 2 reflectances are available from 490 

http://dx.doi.org/10.5067/MODIS/MOD04_L2.006 for Terra and http://dx.doi.org/10.5067/MODIS/MYD04_L2.006 for 

Aqua, CALIOP data can be downloaded at https://doi.org/10.5067/CALIOP/CALIPSO/LID_L15-STANDARD-V1-00, 

AERONET observations can be downloaded at https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3, IMPROVE data can be 

downloaded from the Federal Land Manager Environmental Database at 

http://views.cira.colostate.edu/fed/DataWizard/Default.aspx, and EMEP data can be downloaded from EBAS at https://ebas-495 

data.nilu.no/. Model data, in addition to the observational data used, is archived at http://dx.doi.org/10.5281/zenodo.8212822.  
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Figure 1: Emissions of (a) dust, sea salt, (b) black carbon, (c) organic carbon, (d) brown carbon, and (e) sulphate as well as the 

production of (d) brown carbon from secondary organic aerosol, (e) sulphate, and (f) nitrate averaged for the period of January 

2016 through December 2019 in the GEOS GOCART-2G benchmark simulation. 

870 
Figure 2: Timeseries of emissions and production of (a) dust, (b) sea salt, (c) black carbon, (d) organic carbon, brown carbon, (e) 

sulphate, and (f) nitrate for the period of January 2016 through December 2019 in the GEOS GOCART-2G benchmark simulation. 
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Figure 3: Deposition of (a) dust, sea salt, (b) black carbon, (c) organic carbon, (d) brown carbon, (e) sulphate, and (f) nitrate averaged 

for the period of January 2016 through December 2019 in the GEOS GOCART-2G benchmark simulation. 875 
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Figure 4: Average AOD at 550 for the period of January 2016 through December 2019 in the (a) GEOS GOCART-2G benchmark 

simulation, (b) MODIS NNR observational product from Aqua, and (c) the difference between the model and observations. 
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 880 

Figure 5: Timeseries of ocean area-averaged (a) monthly mean AOD from the Aqua MODIS NNR observational product and the 

speciated AOD from the GEOS GOCART-2G benchmark simulation, (b) mean seasonal cycle, and the difference between the model 

and observations for the (c) monthly mean AOD and (d) seasonal cycle of AOD. 
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Figure 6: Timeseries of area-averaged monthly mean AOD from the Aqua MODIS NNR observational product and the speciated 885 
AOD from the GEOS GOCART-2G benchmark simulation over (a) North Africa, (b) South Africa, (c) Australia, (d) South Asia, (e) 

North America, (f) South America, (g) Siberia, and (h) Europe. 
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Figure 7: Timeseries of area-averaged monthly mean AOD from the Aqua MODIS NNR observational product and the speciated 

AOD from the GEOS GOCART-2G benchmark simulation over (a) the Iberian Peninsula, (b) Scandinavia, (c) the United Kingdom, 890 
and (d) central Europe. 
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Figure 8: (a) Timeseries of hourly AOD at 550 nm, (b) 2-D kernel density estimate for AOD at 550 nm computed as log(AOD+0.01), 

(c) timeseries of Angstrom exponent, and (d) (e) 2-D kernel density estimate for Angstrom exponent over the AERONET station in 

Mainz, Germany for all co-located data points from the observations and GEOS GOCART-2G benchmark simulation. The statistics 895 
in (b) are computed as log(AOD+0.01). The black dashed line in (b) and (d) indicates the one-to-one line with the blue dashed lines 

are the one-to-one line plus or minus one of the one-to-one line. 
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Figure 9: (a) Timeseries of hourly AOD at 550 nm, (b) 2-D kernel density estimate for AOD at 550 nm computed as log(AOD+0.01), 

(c) timeseries of Angstrom exponent, and (d) (e) 2-D kernel density estimate for Angstrom exponent over the AERONET station in 900 
Tamanrasset, Algeria for all co-located data points from the observations and GEOS GOCART-2G benchmark simulation. The 

statistics in (b) are computed as log(AOD+0.01). The black dashed line in (b) and (d) indicates the one-to-one line with the blue 

dashed lines are the one-to-one line plus or minus one of the one-to-one line. 
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 905 

Figure 10: (a)  Timeseries of hourly AOD at 550 nm, (b) 2-D kernel density estimate for AOD at 550 nm computed as log(AOD+0.01), 

(c) timeseries of Angstrom exponent, and (d) (e) 2-D kernel density estimate for Angstrom exponent over the AERONET station in 

Mongu, Zambia for all co-located data points from the observations and GEOS GOCART-2G benchmark simulation. The statistics 

in (b) are computed as log(AOD+0.01). The black dashed line in (b) and (d) indicates the one-to-one line with the blue dashed lines 

are the one-to-one line plus or minus one of the one-to-one line. 910 
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Figure 11: (a) Timeseries of hourly AOD at 550 nm, (b) 2-D kernel density estimate for AOD at 550 nm computed as log(AOD+0.01), 

(c) timeseries of Angstrom exponent, and (d) (e) 2-D kernel density estimate for Angstrom exponent over the AERONET station in 

Langley, Virginia for all co-located data points from the observations and GEOS GOCART-2G benchmark simulation. The statistics 915 
in (b) are computed as log(AOD+0.01). The black dashed line in (b) and (d) indicates the one-to-one line with the blue dashed lines 

are the one-to-one line plus or minus one of the one-to-one line. 
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 Figure 12: 2-D kernel density estimate for AOD at 550 nm computed as log(AOD+0.01) from 77 AERONET stations across the 

United States and Canada for co-located data points from the observations and the GOCART-2G benchmark simulation. The 920 
statistics are computed as log(AOD+0.01). The black dashed line in (b) and (d) indicates the one-to-one line with the blue dashed 

lines are the one-to-one line plus or minus one of the one-to-one line. 
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B. 

 

Figure 13: Timeseries of zonal mean stratospheric AOD at 869 nm from (a) OMPS-LP observations and (b) the GEOS GOCART-

2G benchmark simulation. 
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 935 

 

Figure 14: Vertical profiles of total (aerosols + molecular) attenuated backscatter coefficient (km-1 sr-1) at 532 nm and derived from 

GEOS GOCART-2G simulations sampled on the CALIOP path and averaged over the continental United States, northern Africa 

(top row), South America and southern Africa (bottom row) for the period of June-July-August 2016. The solid lines are the median 

of all profiles for CALIOP (black) and GEOS GOCART-2G (red). Shaded areas represent the 25th-75th percentile of all modelled 940 
and observed profiles. 
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Figure 15: (a) Timeseries of monthly median and (b) median seasonal cycle of reconstructed PM2.5 for the IMPROVE monitoring 

stations across the United States from the observations and GEOS GOCART-2G benchmark simulation. Shading lies between the 945 
25th and 75th percentiles. 
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Figure 16: Timeseries of the monthly median and median seasonal cycle for fine (a, e) sulphate, (b, f) nitrate, (c, g) organic carbon, 

and (d, h) dust averaged for the IMPROVE monitoring stations across the United States from the observations and GEOS 

GOCART-2G benchmark simulation. Shading lies between the 25th and 75th percentiles. 950 
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Figure 17: (a) Timeseries of monthly median and (b) median seasonal cycle of reconstructed PM2.5 from four EMEP monitoring 

stations across Germany and one in Poland from the observations and GEOS GOCART-2G benchmark simulation. Shading lies 

between the 25th and 75th percentiles. 
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Figure 18: Timeseries of the monthly median and median seasonal cycle for fine (a, e) sulphate, (b, f) nitrate, (c, g) organic carbon, 

and (d, h) black carbon for four EMEP stations across Germany and one in Poland from the observations and GEOS GOCART-2G 

benchmark simulation. Shading lies between the 25th and 75th percentiles. 
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Table A1. Aerosol particle size ranges for dust, sea salt, carbon, sulphate, and nitrate in GOCART-2G. Note a lower and upper 

radius is not given for carbon or sulphate as there are not discrete size bins. 

Aerosol Bin Effective Radius Assumed 

for Radiation (µm) 

Radius Lower Bound (µm) Radius Upper Bound (µm) 

DU001 0.636 0.1 1 

DU002 1.324 1 1.8 

DU003 2.301 1.8 3 

DU004 4.167 3 6 

DU005 7.671 6 10 

SS001 0.079 0.03 0.1 

SS002 0.316 0.1 0.5 

SS003 1.119 0.5 1.5 

SS004 2.818 1.5 5 

SS005 7.772 5 10 

BC 0.0392   

BR 0.0876   

OC 0.0876   

SU 0.156   

NI001 0.156   

NI002 2.10   

NI003 6.86   

 965 

Table A2. Optics table versions in the initial release of GOCART-2G 

Specie Optics Table 

Black Carbon optics_BC.v1_3.nc  

Brown Carbon optics_BRC.v1_5.nc 

Dust optics_DU.v15_3.nc 

Nitrate optics_NI.v2_5.nc 

Organic Carbon optics_OC.v1_3.nc 

Sea Salt optics_SS.v3_3.nc 

Sulphate optics_SU.v1_3.nc 
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